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NATIONAL, AERONAUTICS AND SPACE ADMINISTRATION

TECHNLCAL MEMORANDUM X-T706

TRANSONIC AERODYNAMIC CHARACTERISTICS OF
THREE V/STOL FIGHTER MODELS WITH VARIABLE-SWEEP OR
SKEWED WINGS AND DIFFERENT ENGINE INSTALLATIONS®

By Francis J. Capone and Edwin E. Lee, Jr.
SUMMARY

An investigation has been conducted in the Langley 16-foot transonic
tunnel to determine the aerodynamic characteristics of three twin-jet
variable-sweep fighter configurations having multimission capabilities.
Tests were conducted at Mach numbers from 0.70 to 1.08 and angles of

attack from -2° to 70. The Reynolds number per foot varied from 3.57 X 106

to 4.35 x 106. Two of the models had identical variable-sweep wings with

the outboard panels swept 80°, and the third had a straight wing skewed
90° about a central pivot. One of the variable-sweep models had nacelles
suspended from the fuselage afterbody, and on the other two configurations
the Jjet exits were located in the fuselage base.

The results of the investigation indicate that all models were longi-
tudinally stable and exhibited low lift-curve slopes. The critical Mach
number for all configurations was approximately 0.90 and the drag-rise
increments ranged from 50 to 70 percent of the subsonic drag level. The
configuration with nacelles produced the lowest drag rise but had the
highest overall drag coefficient level.

INTRODUCTION

The National Aeronautics and Space Ad#iinistration is conducting an
extensive research program to evaluate the multimission performance capa-
bilities of various tactical fighter configurations incorporating
variable-wing-sweep techniques. The desired operating characteristics
include short-field take-offs and landings, long-range subsonic flight
for ferry and loiter operations, and supersonic operation at both sea
level and altitude. Transonic and supersonic aerodynamic data are given
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in references 1 to 8 for some of the configurations already tested in
this program.

The present investigation was conducted to determine the relative
aerodynamic characteristics of three fighter configurations having dif-
ferent types of variable-geometry wings and engine instaliations. Minimum
drag characteristics under conditions approximating the low-level attack
mission were of particular interest. Two of these configurations used
identical outboard-pivot type variable-sweep wings with the leading edges
of the outer panels swept 80°. The third configuration involved a "skewed
wing" positioned with the 50-percent-chord line in the streamwise direc-
tion. Results for another configuration employing this particular wing
concept are given in references 9 and 10. One of the variable-sweep
models had strut-mounted engine nacelles located on the fuselage after-
body and the other two configurations had two-dimensional side inlets
ducted to twin Jet exits in the fuselage base to represent aircraft with
engines buried in the fuselage.

The‘tests were conducted in the Langley 16-foot transonic tunnel at
Mach numbers from 0.70 to 1.08 and at angles of attack from -2° to 7°.

The test Reynolds number per foot varied from 3.57 X 106 to 4.35 X 106.

SYMBOLS
c mean aerodynamic chord, in.
Ca,i internal axial-force coefficient, Latérnal ::ial force
Cp drag coefficient, Qigﬁ
Cﬁ drag ccefficient based on unit area
Cp, 1ift coefficient, %
CLQ lift-curve slope per deg, EEE

da

Cn pitching-moment coefficient, Pitching moment

qSE L J,};.u,ms;ev



CmCL longitudinal stability parameter, ggf

Cp,b fuselage or nacelle base-pressure coefficient, Eb—é—gf

L/D 1ift-drag ratio

M free-stream Mach number

m/m” inlet mass-flow ratio based on inlet capture area

P static pressure, lb/sq ft

q free-stream dynamic pressuré, lb/sq ft

S reference area, sq ft

a angle of attack referred to wing chord plane, deg

A wing sweep referred to wing leading edge or 50-percent chord,
deg

Subscripts:

b fuselage or nacelle base

0 free stream

max maximum

min minimum

APPARATUS AND PROCEDURE

Wind Tunnel and Support System

The Langley 16-foot transonic tunnel is a single-return atmospheric
wind tunnel with a slotted test section of octagonal cross-sectional
shape. The speed of this tunnel ranges from a Mach number of 0.20 to
1.10 and can be varied continuously by changing the tunnel drive power.

The models were sting mounted and supported by a strut extending
through the test-section floor. The entire system was pivoted in such



a manner that the models remained on or near the tunnel center line
throughout the angle-of-attack range.

Models

Sketches and photographs showing the general arrangements of the
three HS-percent-scale models are given in figures 1 to 7. Other perti-
nent geometrical parameters, not shown on the model sketches, are listed
in table I. All models had internal flow ducts with the inlets sized for
properly matched operation at a Mach number of 1.2.

Model 1 (figs. 1 to 3) was investigated with three slightly differ-
ent fuselage shapes. The basic, full-length configuration was tested
with a sting cover plate installed on the bottom of the afterbody
(model 1, fig. 3(a)). This plate was used to contour properly the orig-
inal afterbody, which had been slotted to accommodate a different sting
than the one actually used. Tests were also made without the cover plate
in order to determine its aerodynamic effects (model 1A, fig. 3(b)). In
addition, the model was investigated with a shortened nose section but
only with the cover plate installed (model 1B, fig. 1).

The second variable-sweep configuration (figs. 4 and 5) used the
same wing as model 1 and a very similar tail arrangement, the major dif-
ferences being the afterbody shape and nacelle installation. Tests were
conducted with the nacelles in two different vertical positions, the lower
being derived from the basic position of model 2 by incorporating negative
dihedral and additional length in the nacelle mounting struts (model 2A,
fig. 4(b)). The longitudinal and lateral positions of the nacelles
remained unchanged.

The "skewed-wing" configuration, designated model 3 (figs. 6 and T),
had a fuselage similar to that of model 1, with engines located in the
afterbody. In this case, however, the planform was to be varied by
rotating a straight, tapered wing about a central pivot. The unusual
tail arrangement was necessary to provide adequate longitudinal stability
with the wing skewed 90° (fully retracted). Like the previous variable-
sweep configurations, model 3 was tested with the wing fully retracted.

In addition to the complete-model configurations described, models 1
and 3 were also tested with the horizontal- and vertical-tail surfaces
removed. A summary of all conflgurations is given in table II.

Normal, cross-sectional-area distributions of the major configurations
are shown in figures 8 to 10. On each of these plots, approximately
83 percent of the total inlet capture area has been deleted over the
length of the internal ducting. This increment represents the effective
internal flow area based on an average measured mass-flow ratio for each
model.



Instrumentation

A six-component internal strain-gage balance was used to determine
the forces and moments on the models. The electrical outputs from the
balance were transmitted to self-balancing potentiometers, converted to
digital form, and punched into cards. Total and static pressures from
rake surveys of the duct or nacelle exits, and static pressures in the
base and balance cavity of each model were measured with mercury manom-
eters. The pressure data were photographically recorded during the inves-
tigation and later punched into cards.

Tests

Forcé and moment data were obtained for each model configuration at
Mach numbers from 0.70 to 1.08. Since the minimum drag characteristics
were of primary importance, data were only taken over a relatively small
angle-of-attack range. For model 1, the angles varied from about =20
to T°; for model 2, from about -2° to uo’ and for model 3, from about -2°
to 6°. Maximum and minimum values of test Reynolds number per foot are
plotted against Mach number in figure 11. The only wing settings inves-
tigated were the 80° sweep position of models 1 and 2 and the 90° skewed
position of model 3. No attempt was made to trim the models for any
particular flight condition.

Boundary-layer transition was fixed on each model by strips of
No. 180 carborundum grain 0.125 inch wide located 1 inch behind the nose
and 0.25 inch behind the leading edge of the wing and tail surfaces. For
models 1 and 3, similar strips were also positioned about 1 inch in back
of the inlet lips, and for model 2, approximately 0.5 inch behind the
nacelle inlets and leading edges of the nacelle support struts.

In another series of runs completely separate from those of the
force tests, rake surveys were made of the static and total pressures
in the duct exits, and the static pressures over the base and balance
cavity areas of the models were also determined. The resulting mass-
flow ratios, internal axial-force coefficients, and base-pressure coeffi-
cients, appear in figures 12, 13, and 1k, respectively.

Corrections and Accuracies

All drag data have been adjusted to the condition of free-stream
static pressure existing at the base of the fuselage or nacelles and in
the balance cavity. For model 1A the base correction also includes the
area of a small step which existed at the forward end of the afterbody
slot when the sting cover plate was removed. Corrections to the drag
have also been made for axial forces caused by the internal flow. (See



fig. 13.) The angle of attack, measured from the wing chord plane, has
been corrected for both flow angularity and sting support deflections
caused by aerodynamic loads.

On the basis of the known characteristics of the instrumentation and
data reduction procedures, the data are estimated to be accurate to within
the following limits:

Mo ¢ o ¢ o o o s o o 5 s s o o s o s o s o s s s o a s s s o o +0.005
@y GEZ o o + ¢ o « o o o s 6 s s s s e s s s e s s s s e o » ‘+0.15
CI, « ¢ ¢ o o o o ¢« o o o s & ¢ s o o s o o o 2 s s 4 s e e 0.01
CD ¢ ¢ o o ¢ o o o o o o o o o o o o o o s o o s o o o o 0 s $0.0005
Cil o o o o o o o o o o o o o o o o o o o o o s o s 8 4. e *0.005

Some force data were obtained at angles of attack beyond the range
covered by the base and internal corrections, and extrapolations of the
pressure data were sometimes necessary. Since these data vary only moder-
ately with angle of attack, any resulting errors should be small. The
drag accuracy quoted is, however, only applicable to the angle range
shown in figures 12 to 1k.

PRESENTATION OF RESULTS

The results of this investigation are presented in the following
figures:

Figure
Longitudinal aerodynamic characteristics:
Model 1 & v o v v v v v v 6 o o o s o o o o o o o o 0 o o o o 15
Model 1, tails Off & v ¢ v 4 ¢ 4 o ¢ o o o o + o o o o o o . 16
Model JA & & ¢ v ¢ o o o o o o o o o o o o o o 8 s o o o s 17
MOAEL 1B & v « o o o o o o o o o o o o « o o o o o o o o o 18
Model 2 e o e + o « o s s 8 8 o s s e e v e s s s e s e o s 19
Model 2A & ¢ ¢ ¢ v o o 5 « o o s o o s o o s s o 86 o 8 s e 20
Model 3 e 4 e o o o s s o s 6 e o s s e s s e o o s s e s s 21
Model 3, tails of e e s 4 s 8 e s 4 e s e « e s s e 22
Variation of CLa with Mach number:
Models 1, 1 (tails off), 1A, and 1B &« + « & v & « o « « « o . 23
Models 2 and 2A ¢+ v v o o o « o o o o o o e e o v e 0 e e 24

Models 3 and 3 (tails off) .« v v v v 4 ¢ ¢« v o v o o o o o & 25



Figure
Variation of C with Mach number:
mCL
mmdsl,l(tmlsoﬁj,lA BN 1B v « 4 .+ s e e e e e e 26
Models 2 and 2A . . . . « e e o s 4 e & s 4 e e s e s 27

Models 3 and 3 (talls off) e e e e e e e e e e e e e e 28

Variation of (L/D)pgx &nd Cp, for (L/D)pax with Mach number:
Models 1, 1 (tails off), 1A, and 1B . . . . « « « ¢ « « o = « . 29

Variation of CD min with Mach number:

Models 1, 1 (talls off), 1A, and 1B & + « & « « « o + « + « » . 30
Models 2 and 2A . . . . e e e s s e e s e e e ee e 31
Models 3 and 3 (tails off) . 2

Variation of Cp min for models 1, 2, 2A, and 3 .« « . . . . . . 33
DISCUSSION

Lift and Pitching-Moment Characteristics

The basic models were all longitudinally stable over the transonic
speed range and exhibited low lift-curve slopes. (Low lift-curve slopes
are essential in minimizing gust loads during low-altitude supersonic
flight.) The average value of lift-curve slope between Mach numbers of
0.90 and 1.08 generally varied from 0.03 to 0.045 for the different models,
based on individual wing area. (See figs. 23 to 25.) Over the same
speed range the longitudinal stability parameter CmCL varied from -0.2

to -0.3 for model 1, from -0.1 to -0.16 for model 2, and from -0.5 to
-0.7 for model 3. (See figs. 26 to 28.) Within the limited angle-of-
attack range of the investigation, maximum values of untrimmed lift-drag
ratio could only be obtained for model 1, and these values varied from a
maximum subsonic level of 7.6 to approximately 5.6 at low supersonic
speeds. (See fig. 29.)

Modifications made to the fuselage of model 1 involving the sting
cover plate or the short nose section had no significant effect on 1lift-
curve slopes or the longitudinal stability parameter. (See figs. 23
and 26.) Lowering the nacelles on model 2 produced no change in 1lift-
curve slope but did reduce the stability of this configuration at tran-
sonic speeds. (See figs. 24 and 27.)

Comparing the data for models 1 and 3 with and without tail surfaces
shows that the wing-hndy component of the variable-sweep configuration



provided most of the total 1ift and significant stabilizing effect at
positive 1ift coefficients. (See figs. 15 and 16.) However, the wing-
body combination of the skewed-wing configuration, having almost no
exposed wing area behind the moment center, produced little more than
half the total 1lift and was unstable. (See figs. 21, 22, 25, and 28.)

Minimum Drag Characteristics

The minimum drag coefficients presented in figures 30 to 32 are
based on the individual wing area of each configuration. These figures
generally show that the critical Mach number for all models was approxi-
mately 0.90 and that the drag-rise increments at M = 1.08 ranged from
50 to T0 percent of the subsonic drag level.

A comparison of the minimum drag of models 1 and 1B (fig. 30) shows
that shortening the nose section with the sting cover plate installed
caused no appreclable change in subsonic drag or critical Mach number
and only increased the drag rise slightly.

The difference in the drag characteristics of models 1 and 2 can be
attributed primarily to the influence of the engine installation on the
shape of the rear 50 to 60 percent of the fuselage, since the remaining
components of the two configurations are very similar, if not identical.
Less drag rise was achieved with the tapered-afterbody—nacelle combina-
tion than with the broad fuselage shape of model 1. (See figs. 30, 31,
and 33.) Although neither of the nacelle positions investigated was
necessarily an optimum with regard to aerodynamic interference, a slight
reduction in drag rise was obtalned by displacing the nacelles vertically
to the position of model 2A. (See figs. 31 and 33.) Subsequent tests of
a similar configuration involving different lateral and longitudinal
nacelle positions tend to show that lateral position may have the largest
influence on drag at transonic speeds (unpublished data). Although
model 2 provided less drag rise, the overall drag for this particular
configuration was higher than that of model 1 at all Mach numbers. (See
figs. 30, 31, and 33.)

In order to show the relative merits of the various configurations
for a given mission, namely, that of low-level supersonic dash, the
Drag/q (that is, Cﬁ,min) of the various models has been computed and
results presented in figure 33. As might be expected from the lower
fineness ratio of model 3, the transonic drag rise was greater than that
of models 1 and 2. This condition resulted in model 3 having a slightly
higher drag than model 1 at a Mach number of 1.08.

In view of the general interest in the effects on drag of altering
model afterbody contours for wind-tunnel support systems, it should also
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be noted that the drag of model 1A (underportion of afterbody slotted)
was conservative with respect to that of model 1. (See fig. 30.) This
effect is attributed to the adverse influence of the slot on afterbody
pressure recovery as indicated by the base-pressure data in figure 13(a).
Furthermore, unpublished data from a more recent investigation tend to
show that the drag of afterbodies with large fairings between the jet
exits may be similarly affected when the lower portion of the fairing is
removed to accommodate a sting.

SUMMARY OF RESULTS

A transonic investigation of three V/STOL fighter models with fully
retracted variable-sweep or skewed wings and different engine installa-
tions showed the following results:

1. All complete models were longitudinally stable and exhibited low
lift-curve slopes.

2. The critical Mach number for all configurations was approximately
0.90, and the drag-rise increments ranged from 50 to 7O percent of the
subsonic drag level.

5. The model with nacelles suspended from the fuselage afterbody
produced less transonic drag rise than a comparable configuration with
the jet exits located in the base; however, the overall drag was higher
for the podded-engine configuration at all Mach numbers.

Langley Research Center,
National Aeronautics and Space Administration,
Langley Station, Hampton, Va., June 5, 1962.
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TABLE I.- MODEL GEOMETRICAL PARAMETERS

Model 1 Model 2 Model 3
Wing:
Area, sq ft . . . . . e e e e s 1.2075 1.2075 1.000
Mean aerodynamic chord, in. . . . 12.80 12.80 7.20
Aspect ratio . . . ¢ s o i . . . 1.25 1.25 0.59
Incidence angle, deg . . . . . 1.0 1.0 0
Dihedral angle, deg e e e e e e 0 0 0
Airfoil sections .« « + & + 4 . . 64A207 64A207 5 percent (upper)
Normal to T.E. Normal to T.E. Flat (lower)
Horizontal tall:
Area (exposed), sq ft . . . . . . 0.227 0.213 _ 0.226
Incidence angle, deg .« . « « & = 0 0 0
Alrfoil sections .« + + « & & o & 65A003 65A003  64A00k.35 (root)

644002 (tip)

Vertical tail:

Area (exposed), sq ft . . . . 0.252 0.205 0.212
Dihedral angle (from vertlcal),

deg « + ¢ ¢« 4 .o . . . . e 0 0 30
Airfoil sections .« « « v & o o 65A003 654003 642004 (root)

64A002 (tip)
Miscellaneous:

Approximate external wetted area,

SAFE v v v e e e e e e e e e 5.80 6.17 4,863
Total inlet capture area,

=T T R 0.0185 0.0246 0.0194

Total duct exit area, sq ft . e e 0.0190 0.0246 0.019k4

¢HOE -1
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TABLE II.- SUMMARY OF MODEL CONFIGURATIONS

Model

Description

Configuration
tested

Long nose; outboard pivot type wing with outer
panels swept 80°; side inlets; engines loca-

Complete model

1 ted in fuselage afterbody; sting cover plate | Horizontal and
installed. vertical tails
removed
1A | Model 1 with sting cover plate removed. Complete model
Model 1 with short nose section and sting cover | Complete model
1B A
plate installed.
Wing identical to that of model 1; engine Complete model
2 nacelles on fuselage afterbody in upper posi-
tion (nacelle-strut dihedral angle, 0°)
op Model 2 with nacelles in lower position Complete model
(nacelle-strut dihedral angle, -15.97°)
"Skewed wing" with single, centrally located Complete model
pivot; wing positioned with 50-percent-chord
3 line parallel to stream; twin vertical sta- | Horizontal and

bilizers; side inlets; engines located in
fuselage afterbody.

vertical tails
removed
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«

L-60-6863

Figure 2.- Photograph of model 1.
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L-61-6505

(b) Bottom view.

Figure 5.- Continued.
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a, deg

Angle of attack,

(a) Models 1, 1A, and 1B.
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Figure 12.- Variation of mass-flow ratio with angle of attack.
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Figure 14.- Variation of fuselage or nacelle base-pressure coefficient
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(a) Lift and drag coefficients.
Figure 15.- Aerodynamic characteristics for model 1.
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(b) Pitching-moment coefficients and lift-drag ratios.

Figure 15.- Concluded.
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Figure 16.- Aerodynamic characteristics for model 1 (tails off).



Lo

P N 4

*popnTou0) -*9T INJTL

*SOT3BI FBIP-1ITT PUB SIUSTOTIFS00 Juauow-Fuiydodtd (q)

To 4uania00 417

S v ¢ z I 0 | c e - y o -
i = g #mﬂ%ﬁ 0O o 80l ; 80 —
= B
it mﬁm e nv
: 0O < 001 O

W__, ]
Eerree H0 7 S6 o W
- 7 :
= 0 ¢ 06 g - 1 {0 o 80 g
g B 3
o 08 ,.W. = 10 9 SO -
- , g
S =
o 020 © = 0 v 001 2
B 3
W 2
10 vge §

mO o 06

0] o 0%

0O ©:0.L0




41

A R e
R IR e

i

—

o S

o o o < 4 a a g

7 Q

o o) o) 0 o 0 o &

2z < o & * o o o %
(@] — - - 8

: |

(a) Lift and drag coefficients.
Figure 17.- Aerodynamic characteristics for model 1A.
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(b) Pitching-moment coefficients and 1ift-drag ratios.

Figure 17.- Concluded.
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Figure 18.- Aerodynamic characteristics for model 1B.
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(a) Lift and drag coefficients.

Figure 20.- Aerodynamic characteristics for model 2A.
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Figure 20.- Concluded.
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(a) Lift and drag coefficients.

Figure 22.~ Aerodynamic characteristics for model 3 (tails off).
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Figure 28.- Variation of pitching-moment-curve slope with Mach number
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